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A general topological n-electron Hamiltonian is deffmed as an appropriate function 
of the adjacency matrix. It is shown that any electronic property of a planar benzenoid 
hydrocarbon, including its all-electron wavefunction, is entirely determined by the 
topological n-electron Hamiltonian describing the hydrocarbon. However, using electronic 
wavefunctions (calculated at the HF/6-31G *° level) of several such hydrocarbons as 
examples, it is demonstrated that it is impossible to construct topological Hamiltonians 
with eigenvectors related by simple universal algebraic formulae to the corresponding 
occupied Hartree-Fock orbitals of r~ symmetry. This observation casts doubt on the 
usefulness of the Htlckel n-electron orbitals in understanding the electronic structures 
of benzenoid systems. 

. Topological n-electron Hamiltonians and their relation to the exact electronic 
properties of planar benzenoid hydrocarbons 

Let M stand for a molecule of a planar benzenoid hydrocarbon with its 
ground-state equilibrium geometry specified by the charges and the Cartesian 
coordinates of its nuclei. Let G(M) be the hydrogen-suppressed molecular graph of 
M possessing N vertices, and A(M) be the corresponding adjacency matrix [1]. Let 
H(M) be an N x N square symmetric matrix. We call H(M) a topological re-electron 
Hamiltonian describing M if 

Hij=Aij3~j(A), fij(A) ~0,  for 1 < i , j < N ,  (1) 

where the functions fii defining H are such that H transforms with respect to the 
permutations of the vertices of G in the same way A does. 

The two most common examples of topological n-electron Hamiltonians 
are the Hiackel Hamiltonian and the "variable fl" Hamiltonian. The Hfickel 
Hamiltonian [2] is defined by the trivial choice of3~/--- 1. To obtain the "variable 
fl" Hamiltonian, one puts [3-5] 
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fq(A) = 1 +f(Pq), (2) 

where f(x) is a nondecreasing function of x, and the bond order matrix P is related 
to H through the following relation, valid for bipartite G(M) [6,7]: 

P = 1 + (H2)UEH -I. (3) 

Such an implicitly defined "variable fl" Hamiltonian is often regarded as an improvement 
over the H~ckel Hamiltonian. 

From the definition (2), it is obvious that, for a given choice of the functions 
-~i, the adjacency matrix entirely defines the topological g-electron Hamiltonian. 
Conversely, H entirely defines A, which can be simply obtained by replacing all 
the non-zero elements of H by ones. For obvious reasons, there is (ignoring the 
permutations of vertices) a one-to-one correspondence between the adjacency matrix 
and the molecular graph. Moreover, because cis/trans isomerism is impossible in 
planar benzenoid hydrocarbons, the molecular graph G(M) uniquely determines the 
molecule M (including its ground-state geometry), and vice versa. This is so because 
the knowledge of G(M) is sufficient to determine an approximate geometry of M 
(for example, by assuming standard bond lengths and angles) which can then be 
optimized by minimizing the total ground-state energy. For a given M, such 
minimization is always expected to converge to the same minimum, independent of 
the initial approximate geometry. Therefore, one may write down the following 
chain of bijective relationships: 

M<--)G(M)<--rA(M)<--)H(M). (4) 

On the other hand, the knowledge of M is sufficient to write down the 
corresponding electronic Hamiltonian (including the nucleus-nucleus repulsion terms) 
h(M). The SchrOdinger equation 

£(M)~'(M) = e(M)~g(M) (5) 

yields the exact electronic ground-state wavefunction of M, v(M), and the exact 
Born-Oppenheimer total ground-state energy e(M). It is also easy to realize that 
v(M) not only allows one to compute any electronic property of M, Q(M), but also 
uniquely determines/~(M). Therefore, one may extend the chain (4) and write: 

Q(M) <--- v(M) <---)/~(M) <---) M (---) G(M) ~ A(M) <---) H(M). (6) 

In practice, the ground-state eigenvalue and eigenfunction of/~(M) can be 
computed only in an approximate manner. However, when a well-defined level of 
approximation, such as the Hartree-Fock method, is used, the above chain of 
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relationships remains valid even when the exact ~(M) and Q(M) are replaced by 
the approximate ones. One concludes that the knowledge of the adjacency matrix (or 
the topological g-electron Hamiltonian in general) describing a planar benzenoid 
hydrocarbon is sufficient to determine any of  its exact or approximate electronic 
properties. This does not necessarily imply, however, that the corresponding functions 
~A[A] and QA[A] (or I/0t[H] and QH[H]), 

Q(M) = (~a [A(M)]IQIVA [A(M)]) = QA[A(M)] 

= (gt/~ [H(M)]101 gtu [H(M)]) = QH [H(M)] (7) 

should be expected to have simple forms. This is in some sense reminiscent of 
density functional theory [8] in which the total energy of M, e(M), is a unique 
functional of the electron density of M, p(M, r), but only approximations to the 
exact functional are mathematically tractable. 

The fact that the relationships between the adjacency matrix (or the quantities 
derived directly from it) and some of the electronic properties of M can be accurately 
approximated by simple algebraic functions is often viewed as an indication that 
the methods of chemical graph theory are capable of explaining some aspects of the 
electronic structures of planar benzenoid hydrocarbons. In particular, even the 
unsophisticated Hfickel Hamiltonian is known to yield total re-electron energies that 
correlate reasonably well with the total Hartree-Fock energies [9, 10] or with the 
~-electron kinetic energies [10]. On the other hand, the bond lengths (as correlated 
with the bond orders, eq. (3)) [3] and the ionization potentials (as correlated with 
the eigenvalues of H(M)) [11] are calculated more accurately when a "variable fl" 
Hamiltonian is used instead of the H~ckel one. This observation demonstrates that, 
although the properties are functions of the adjacency matrix itself, use of the more 
general topological re-electron Hamiltonians is expected to either simplify the functional 
dependencies needed to calculate the properties or improve the accuracy of approximate 
relationships. 

Although the existence of simple, yet reasonably accurate, correlations between 
the topological rc-electron Hamiltonians and the electronic properties of planar 
benzenoid hydrocarbons is gratifying, the importance of the all-electron wave function 
(either exact or approximate) in interpreting the electronic structure of any molecule 
cannot be ignored. Since a one-to-one mapping between the topological re-electron 
Hamiltonian H(M) and the corresponding all-electron wavefunction lg(M) is provided 
by the chain (8), one may inquire whether it is possible to construct topological 
Hamiltonians with eigenvectors C(M) that are related to v(M) (or quantities derived 
from it) through simple functional dependencies. Specifically, the question of the 
relations between the ith eigenvector of H(M), Ci(M), and the corresponding occupied 
Hartree-Fock molecular orbital of ~ symmetry, @i(M, r), is of particular importance. 
Should such a construction be possible, the resulting topological Hamiltonians 
could be regarded as "exact". 
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. The possible relationships between eigenvectors of the topological 
Hamiltonians and the occupied Hartree-Fock molecular orbitals 
of ~ symmetry 

Before the aforementioned relationships can be considered, an approach allowing 
one to map ~i(M, r) onto a finite space of the vertices of G(M) has to be specified. 
Although, in practical calculations, the Hartree-Fock orbitals are expanded into a 
finite set of basis functions usually centered at nuclei, the mapping has to be free 
from the arbitrariness imposed by such an expansion. This means that the coefficients 
of the basis functions cannot be used for the mapping. However, it is possible to 
employ Bader's topological theory of atoms in molecules [12] for this purpose. 

Within the scope of Bader's theory, the knowledge of electron density p(M, r), 
which is directly derivable from the electronic wavefunction v(M), allows one to 
partition the entire Cartesian space into so-called atomic basins. When carried out 
over atomic basins, integration of quantities related to v(M) affords atomic properties. 
In particular, the atomic overlap matrices are given by [12] 

f~b 
(ilJ)A( M ) =  i (M,r)~j(  r)dr, 

~A 

(8) 

where f~A is the atomic basin of the atom A belonging to M. The above definition 
can be directly extended to provide vertex overlap matrices by replacing the atomic 
basins by the vertex basins. A vertex basin is defined as the union of the atomic 
basins of the carbon atom associated with the vertex and the atomic basins of any 
hydrogen atoms linked to it. 

The vertex overlap matrices satisfy the sum rules 

(ilJ)v (M) = S O, (9) 
Ve G(M) 

where the summation runs over all the vertices of the molecular graph G(M). The 
calculation of the vertex overlap matrices constitutes a reduction process in which 
the Hartree-Fock wavefunction v(M) is mapped onto a set of (N/2) × (N/2) (N/2 
is the number of occupied molecular orbitals of n symmetry) symmetric matrices, 
with each vertex assigned one matrix. 

In order to investigate the possible relationships between ~(M) and the 
eigenvectors of H(M), the necessary (but not sufficient) conditions that the basis 
functions used in the construction of H(M) must satisfy should first be studied. To 
do that, one has to understand the meaning of these basis functions. In its original 
formulation, the Hfickel Hamiltonian acts upon the Hilbert space spanned by one 
Pz atomic orbital per each of the carbon atoms comprising the molecule in question. 
However, such basis functions are not mutually orthogonal and, unlike their ab initio 
counterparts, the H~ickel Hamiltonian matrix elements do not have any clear physical 
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meaning. We prefer a more abstract interpretation of the topological n-electron 
Hamiltonian in which the N-dimensional vector of basis functions o) is not explicitly 
specified, provided its components satisfy the following conditions: 

(1) Orthonormality: 

(O)AIO)B) = ~AB, (10) 

where A and B are any two vertices of G(M). 

(2) Compactness: The values of vertex overlap matrices for the basis functions 
(O)AICOB) v have to be close to zero unless the topological distances between the 
vertices A, B and V ~ G(M) are small enough. This condition arises from the notion 
that, in order to be (at least approximately) transferable between different molecules, 
the basis functions must resemble well-localized atomic orbitals. 

Let C~A(M) stand for the component of the ith eigenvector of H(M) at the 
vertex A. The topological vertex overlap matrix can then be defined as 

(ilJ)v(M) = ~ [iAIjB](M)(O)AICOB)v(M), 
A,B~ G(M) 

[iA IjB] (M) = C~a(M)CjB(M). 

where 

(11) 

(12) 

Note that the trivial relations 

[iAIjB](M)[kCIID](M)- [iAllD](M)[kCIjB] (M) = 0 (13) 

hold for all A,B, C,D ~G(M), and 1 <i,j,  k, l<N/2. 
The issue of the existence of simple relationships between the all-electron 

wavefunction and the eigenvectors of the topological ~-electron Hamiltonian reduces 
now to the question of whether it is possible to find a set of basis functions for 
H(M) yielding the corresponding overlap matrices ((.0AI09B)v(M) such that, when 
used in conjunction with eq. (11) and the vertex overlap matrices calculated from 
the occupied Hartree-Fock orbitals, the resulting products [iA IjB](M) satisfy the 
relations given by eq. (13). From the mathematical point of view, the problem of 
finding the aforementioned quantities is underdetermined. However, the orthogonality 
and compactness conditions impose severe restrictions on the possible solutions. 

. g-electron vertex overlap matrices from the HF/6-31G** electronic wave- 
functions 

In order to determine whether simple relationships exist between ~I(M, r) 
and Ci(M), Hartree-Fock calculations were carded out for five planar benzenoid 
hydrocarbons, namely naphthalene, anthracene, phenanthrene, benzanthracene, and 
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chrysene. All molecular geometries were fully optimized at the HF/6-31G** level. 
The Hartree-Fock wavefunctions were used in turn to compute the vertex overlap 
matrices for the occupied molecular orbitals of ~ symmetry. 

The first hypothesis tested is that the basis functions of H(M) are strictly 
localized within the respective vertex basins. This means that the conditions 

(fOAl COB)v(M) = ~ABSAV (14) 

are assumed to hold. This results in the simple relationship 

(ilJ)v(M) = [iV IN] (M)  (15) 

between the re-electron vertex overlap matrices and the eigenvectors of the topological 
~-electron Hamiltonian. In order to asses the validity of eq. (15), the RMS error 
for a subset of the relations (13) was computed as 

A = {N(N/2) [(N/2) - 1] }-1/4 

1"' × ~. {[iVliV](M)[jVIjV](M)-[iVIjV](M)[jVliV](M)} 2 . (16) 
V~ M) i , j=l 

A is an estimate of  the average deviation of each term [iVIjV](M) from the value 
that would satisfy eq. (13). The square root of A provides a measure of  the deviation 
of  the individual component of the eigenvector of H(M), Civ(M ). 

Table 1 

The calculated values of RMS error for the relations (13). 

Molecule 
A 

strict localization first neighbor included 

naphthalene 0.0375 0.0130 

anthracene 0.0270 0.0099 

phenanthrene 0.0271 0.0094 
benzanthracene 0.0215 0.0075 

chrysene 0.0213 0.0074 

The values of  A, calculated for five planar benzenoid hydrocarbons, are given 
in the second column of  table 1. They span the range of  0.021-0.038,  which 
corresponds to an average error for Civ(M) of 0.15-0.19.  It is obvious that these 
are unacceptably large errors. Therefore, the simple relationship given by eq. (15) 
does not hold and the hypothesis of  basis functions localized strictly within the 
vertex basins has to be abandoned. 
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Another possibility worth investigating is that the basis functions are not 
confined to their respective vertex basins. The simplest approximation compatible 
with this assumption is provided by the overlap matrices satisfying the equation 

(a~AICOB)v(M) = t~AB teAr(M), (17) 

where the weights ray(M) are positive numbers for all pairs of vertices A - V  that 
share an edge, and equal to zero otherwise. This means that, for a given vertex, the 
corresponding basis function is assumed to stretch only over all of its first neighbors. 
Note that the weights have to satisfy the constraints 

E I~Av(M) = 1, (18) 
V~ G(M) 

for all A E G(M), and that in general tCAv(M) ~: tCvA(M ). For obvious reasons, one 
expects the diagonal elements to dominate the matrix ~:(M). 

The weights ray(M) are obtained by minimizing the values of A, eq. (16), 
with the terms [iA IjA]v(M) resulting from solving the system of linear equations, 
eq. (11), for each pair (i,j). The so minimized values of A are listed in the third 
column of table 1. It is apparent that relaxing the strict localization constraint 
reduces the As by about a factor of three. As in the previous case, the values of A 
decrease with increasing size of the hydrocarbons. However, this does not mean that 
the relations (13) are satisfied with better accuracy as the number of vertices in 
G(M) increases; the absolute values of C/A (M) also decrease with the size of molecules, 
resulting in a relative error that is almost constant. 

Even with the localization constraint relaxed, the values of A are too large 
to justify the existence of simple relationships between the Hartree-Fock orbitals 
and the eigenvectors of the topological K-electron Hamiltonians. Even worse, as 
found by further numerical testing, relaxing the localization constraint to include 
distant neighbors and nonzero overlap matrix elements between the basis functions 
does not decrease the As by a significant amount. 

4. Conclusions 

Although the existence of one-to-one relationships between all-electron 
wavefunctions of planar benzenoid hydrocarbons and the corresponding topological 
n-electron Hamiltonians can be rigorously proven, these relationships are of a 
complicated and implicit nature. This is well demonstrated by the failure of attempts 
to correlate the re-electron vertex overlap matrices with the eigenvectors of the 
corresponding topological re-electron Hamiltonians. The failure stems from the fact 
that it is impossible to find a set of localized (and therefore universal) basis functions 
for the topological Hamiltonians that would be capable of delivering the terms 
[iA IjB]v(M) satisfying the necessary relations given by eq. (13). What this means 
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is that no set o f  basis functions composed o f  one function per vertex o f  the molecular 
graph can yield simple relationships between ~bi(M, r) and Ci. This general negative 
conclusion has important consequences for the understanding of  the mathematical 
structures of  topological re-electron Hamiltonians, and the Hfickel Hamiltonian in 
particular. The Htickel r~-electron orbitals bear no simple relation to their Har t ree -  
Fock counterparts except for sharing the same irreducible symmetry representations 
imposed by the symmetry of  the molecular framework. This means that although 
quantities derived from the HiJckel Hamiltonians, such as re-orbital energies, total 
~-electron energies, and bond orders can be successfully employed in correlations 
involving exact electronic properties, the Hfickel re-electron orbitals themselves are 
of little importance in understanding the electronic structures of conjugated molecules. 
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